

Machine Learning Models for Employee Retention, Turnover Prediction, and Career Path Planning

Savitha D, B. Mohanapriya
ERODE SENGUNTHAR ENGINEERING COLLEGE

Machine Learning Models for Employee Retention, Turnover Prediction, and Career Path Planning

¹Savitha D, Assistant Professor, Department of Artificial Intelligence and Data Science, Erode Segunthar Engineering College, Perundurai, Erode, India. savithadesec@gmail.com

²B. Mohanapriya, Assistant Professor, Department of Artificial Intelligence & Data Science, Erode Segunthar Engineering College, monabalu@esec.ac.in

Abstract

Employee retention and career development are critical determinants of organizational performance, productivity, and long-term sustainability. Traditional human resource management approaches often fail to capture the complex, multidimensional factors influencing employee behavior, limiting their effectiveness in predicting turnover and planning career trajectories. Machine learning (ML) offers a transformative framework for analyzing large-scale, heterogeneous workforce data, enabling accurate prediction of attrition, identification of at-risk employees, and design of personalized career paths. This chapter presents a comprehensive exploration of ML-driven strategies for employee retention, turnover prediction, and career path planning, highlighting the integration of performance metrics, training records, promotion histories, and engagement data into predictive and prescriptive models. Advanced techniques, including supervised and unsupervised learning, ensemble methods, and explainable AI, are examined for their ability to enhance interpretability, fairness, and actionable decision-making. Case studies across multiple sectors demonstrate the practical application of these models in reducing attrition, optimizing talent allocation, and fostering workforce engagement. Current challenges related to data privacy, model transparency, and dynamic workforce behavior are discussed, along with future research directions emphasizing adaptive, real-time, and ethically grounded ML solutions. The insights provided in this chapter offer a robust framework for leveraging machine learning to support evidence-based, strategic human resource management and sustainable organizational growth.

Keywords: Employee Retention, Turnover Prediction, Career Path Planning, Machine Learning, Human Resource Analytics, Explainable AI

Introduction

Employee retention and career development represent critical drivers of organizational efficiency, productivity, and sustainable growth [1]. High employee turnover imposes substantial direct and indirect costs, including recruitment expenses, training overhead, productivity losses, and the erosion of institutional knowledge [2]. Traditional human resource management approaches, such as surveys, performance evaluations, and exit interviews, often provide limited foresight into employee behavior and fail to account for the complex interplay of individual,

organizational, and market-level factors influencing attrition [3]. These conventional methods are largely reactive, identifying issues after they have manifested, and are insufficient for proactive workforce planning. The emergence of machine learning (ML) in human resource analytics provides a systematic, data-driven approach to addressing these limitations by analyzing large, heterogeneous datasets to identify patterns, predict outcomes, and support evidence-based decision-making [4]. By leveraging historical and real-time data, organizations can anticipate attrition risks, optimize retention strategies, and design career development pathways that align employee aspirations with organizational objectives, thereby fostering both engagement and long-term stability [5].

The application of machine learning techniques in workforce management extends beyond simple attrition prediction [6]. ML algorithms, including supervised learning models such as logistic regression, decision trees, random forests, and gradient boosting, enable the identification of employees with elevated turnover risk [7]. These models analyze multiple variables, including performance metrics, engagement scores, tenure, demographic information, and compensation structures, capturing complex, non-linear relationships that traditional statistical approaches often overlook [8]. Unsupervised learning techniques, such as clustering and dimensionality reduction, allow for workforce segmentation, identification of latent patterns, and detection of anomalous behaviors that may indicate disengagement or burnout [9]. Advanced hybrid and ensemble models further enhance predictive accuracy while ensuring interpretability, which was essential for HR practitioners who must justify and implement strategic interventions. By providing actionable insights into workforce dynamics, ML empowers organizations to proactively address retention challenges before attrition occurs [10].

Career path planning represents another critical dimension where machine learning provides substantial value [11]. Employees increasingly expect personalized development pathways and clear growth opportunities, yet traditional HR systems often struggle to accommodate diverse career trajectories [12]. Machine learning models can integrate performance histories, training records, promotion pathways, skill assessments, and engagement indicators to construct predictive frameworks that recommend individualized career paths [13]. Reinforcement learning, collaborative filtering, and optimization algorithms facilitate skill-gap analysis, succession planning, and promotion forecasting, aligning employee aspirations with organizational talent needs [14]. These approaches not only increase job satisfaction and engagement but also contribute to the organization's ability to retain high-performing employees and cultivate a skilled, motivated workforce. Data-driven career planning ensures that employees are placed in roles where they can thrive, while simultaneously enabling organizations to optimize resource allocation and strategic workforce development [15].